An Artificial Neural Network Method for Length-based Vehicle Classification Using Single-Loop Outputs
نویسنده
چکیده
Classified vehicle volumes are important inputs for traffic operation, pavement design, and transportation planning. However, such data are not available from single-loop detectors, the most widely deployed type of traffic sensor in the existing roadway infrastructure. Several attempts have been made to extract classified vehicle volumes from single-loop measurements in recent years. These studies use estimated speed for length calculation and classify vehicles into bins based on the calculated vehicle lengths. Due to the stochastic features of traffic flow, however, deterministic mathematical equations based on certain assumptions for speed calculation typically do not work well for all situations and may result in significant speed estimation errors under certain traffic conditions. Such errors accumulate when estimated speeds are used in vehicle length calculations and degrade the accuracy of vehicle classification. To solve this problem, we develop an artificial neural network method to estimate classified vehicle volumes directly from single-loop measurements. The proposed neural network is very simple. It is a three-layer neural network with back-propagation structure. This method is tested using data collected from several loop stations on I-5 over a long duration. The results show that the proposed artificial neural network model produces reliable estimates of classified vehicle volumes under various traffic conditions.
منابع مشابه
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملLearning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach
This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملApplication of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images
Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...
متن کاملNeural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کامل